Posted on Leave a comment

Hukum Markovnikov dan Hukum Anti Markovnikov pada Alkena

Jika ada senyawa alkena menangkap asam halida maka berlaku sebuah hukum yang disebut hukum Markovnikov. Hukum ini ditemukan oleh peneliti asal negeri beruang merah (Russia). di akhir abad ke 19 (1870). Bunyi hukum Markovnikov sebagai berikut:
“Ketika alkena bereaksi dengan asam halida maka, atom H dari asam akan terikat pada atom C ikatan rangkap yang memiliki atom H lebih banyak dan atom dari gologan halogennya akan berikatan dengan atom C yang mengandung H lebih sedikit”

Aturan Markovnikov dalam kimia organik, berkaitan dengan reaksi adisi pada alkena asimetris (tidak simetris). Alkena asimetris adalah alkena seperti propena dimana gugus-gugus atau atom-atom yang terikat pada kedua ujung ikatan rangkap C=C tidak sama. Sebagai contoh, pada propena terdapat satu atom hidrogen dan sebuah gugus metil pada salah satu ujung, tetapi terdapat dua atom hidrogen pada ujung yang lain dari ikatan rangkap.
Jika sebuah alkena tak simetris diadisi HX, akan diperoleh dua kemungkinan, dan biasanya satu produk lebih melimpah dari produk yang lain. Dalam adisi HX pada alkena asimetris, H+ dari HX menuju ke atom C ikatan rangkap yang telah lebih banyak mengikat atom H.
Aturan Markovnikov menyatakan bahwa dengan penambahan asam protik HX pada alkena, menyebabkan hidrogen asam (H) terikat pada atom karbon dengan substituen alkil yang lebih sediki, dan halida (X terikat pada atom karbon dengan substituen alkil lebih banyak). Atau, aturan tersebut dapat dinyatakan dengan hidrogen asam ditambahkan ke atom karbon yang memiliki jumlah atom hidrogen lebih banyak (kaya atom hidrogen) sedangkan halida (X) ditambahkan ke atom karbon dengan yang jumlah atom hidrogennya sedikit (miskin atom hidrogen).

Dasar kimia dari Kaidah Markovnikov adalah pembentukan karbokation yang paling stabil selama proses adisi. Adisi ion hidrogen untuk satu atom karbon pada alkena menghasilkan muatan positif pada atom karbon lainnya, sehingga terbentuk karbokation intermediet.
Atom H dari HX akan terikat pada atom C yang berikatan rangkap yang mengikat H lebih banyak atau atom H dari HX akan terikat pada atom C yang berikatan rangkap yang mengikat gugus alkil yang lebih sederhana. Atom X akan cenderung terikat pada atom karbon yang mengikat gugus alkil yang lebih panjang (kecuali bila ada pengaruh gugus lain yang berpengaruh terhadap muatan atom C pada ikatan rangkap).

Markovnikov merumuskan aturan berdasar pengamatan eksperimen, Adisi HX pada alkena dirujuk sebagai reaksi regioselektif (Latin: regio berarti arah), suatu reaksi dimana satu arah adisi pada alkena tak simetris lebih melimpah dari dari yang lain. Selektifan ini menghasilkan karbokation antara yang lebih stabil dari antara dua yang mungkin.
Selain aturan Markovnikov, ada juga aturan anti Markovnikov.

pada tahun 1933 M.S Kharas dan F.W. Mayo dari universitas Chicago menemukan bantuan katalis hidrogen peroksida, ternyata dapat membalikkan hukum dari markovnikov. Ketika menggunakan katalis tersebut atom C yang mengikat H lebih banyak cenderung mengikat atom halogen pada senyawa asam halida.

Seperti apa?

Adisi HBr pada alkena kadang-kadang berjalan mematuhi aturan markovnikov, tetapi kadang-kadang tidak(efek ini tak dijumpai pada HCl dan HI). Dikarenakan pada hidrogen klorida tidak mengalami adisi radikal bebas terhadap alkena karena relative pemaksapisahan homolisis HCl menjadi radikal bebas. Sedangkan pada hydrogen iodide tidak menjalani reaksi ini karena adisi I- terhadap alkena bersifat endoterm dan terlalu lambat untuk membentuk suatu reaksi rantai. Reaksi rantai merupakan pembentukan awal beberapa radikal bebas yang akan mengakibatkan perkembangbiakan radikal-radikal bebas baru dalam suatu reaksi pembentukan. Selain itu energy yang diperlukan I-untuk merebut sebuah hydrogen dari ikatan C-H sangat besar(tahap itu sangat endoterm). Akibatnya radikal iodide tak dapat membentuk ikatan dalam suatu reaksi rantai, I- adalah suatu contoh radikal bebas stabil, suatu radikal bebas yang tak dapat merebut halogen.
Anti markovnikov dari HBr terjadi karena terbentuk radikal bebas dari peroksida atau oksigen yang menyerang HBr. Selanjutnya terbentuk radikal bebas Br yang menyerang ikatan rangkap pada alkena dan terbentuk radikal bebas atom C (pada ikatan rangkap) yang lebih stabil.
Kestabilan radikal bebas sesuai karbokation dengan urutan tersier > sekunder > primer. Sedangkan reaktivitas halogen terhadap alkana tidak disebabkan oleh pemaksapisahan (mudahnya molekul X2terbelah menjadi radikal bebas) akan tetapi tergantung pada DH tahap-tahap propagasi dalam halogenasi radikal bebas.

sumber

Posted on Leave a comment

Alkohol dan eter

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRLNYzSgU4B50zDCEzhuxXgzUdbNw6kBwwjq1ZEHOT9OS_0ztJpFw

Alokohol (ROH) dan eter (ROR) erat hubungannya dengan kehidupan manusia sehari-hari sehingga orang awam pun kenal dengan beberapa jenis alkohol. Contohnya, dietel eter sebagai pemati rasa (anesthetic), etil alkohol atau cukup disebut alkohol digunakan dalam minuman keras, 2-propanol (isopropil alkohol) sebagai zat pembunuh kuman (bakteriosida), metanol (metil alkohol) merupakan komponen utama dalam spiritus digunakan sebagai bahan bakar dan pelarut. Dalam laboratorium dan industri, semua senyawa ini digunakan sebagai pelarut dan reagensia.

Continue reading Alkohol dan eter

Posted on 1 Comment

Cara meningkatkan bilangan oktan yang aman

Minimum Octane Rating
Minimum Octane Rating (Photo credit: Henderson Images)

Bensin terdiri dari campuran kompleks hidrokarbon. Sebagian besar adalah alkana dengan 4-10 atom karbon per molekul. Jumlah yang lebih kecil dari senyawa aromatik yang ada. Alkena dan alkuna juga dapat muncul dalam bensin. Bensin yang paling sering diproduksi oleh distilasi fraksional minyak bumi, juga dikenal sebagai minyak mentah (itu juga dihasilkan dari batubara dan minyak serpih). Minyak mentah dipisahkan sesuai dengan titik didih yang berbeda ke dalam fraksi. Proses distilasi fraksional menghasilkan sekitar 250 mL bensin untuk setiap liter minyak mentah. Hasil bensin dapat digandakan menjadi dua kali lipat dengan mengubah fraksi titik didih yang lebih tinggi atau lebih rendah menjadi hidrokarbon dalam kisaran bensin.

Dua proses utama yang digunakan untuk melakukan konversi ini adalah cracking(cracking adalah proses pemecahan molekul hidrokarbon yang kompleks menjadi hidrokarbon yang lebih ringan) dan isomerisasi.

Dalam cracking, fraksi berberat molekul tinggi dan katalis dipanaskan sampai titik di mana ikatan karbon-karbon putus. Produk dari reaksi termasuk alkena dan alkana dengan berat molekul yang lebih rendah daripada yang muncul dalam fraksi aslinya. alkana dari reaksi cracking ditambahkan ke bensin  untuk meningkatkan hasil bensin dari minyak mentah. Contoh dari reaksi cracking adalah:

alkana C13H28 (l) → alkana C8H18 (l) + alkena C2H4 (g) + alkena C3H6 (g)

Dalam proses isomerisasi, alkana rantai lurus diubah menjadi isomer rantai bercabang, yang membakar lebih efisien. Misalnya, pentana dan katalis dapat bereaksi untuk menghasilkan 2-methylbutane dan 2,2-dimethylpropane. Juga, beberapa isomerisasi terjadi selama proses cracking, yang meningkatkan kualitas bensin. Continue reading Cara meningkatkan bilangan oktan yang aman