Posted on Leave a comment

Memahami Bilangan Reynold dalam Mekanika Fluida

​Tahukah kalian apa itu fluida? 

Fluida adalah suatu zat yang dapat mengalami perubahan-perubahan bentuk secara continue (terus-menerus) bila terkena tekanan/gaya geser walaupun relatif kecil atau bisa juga dikatakan suatu zat yang mengalir, kata fluida mencakup zat cair, gas, air, dan udara karena zat-zat ini dapat mengalir.

Sebaliknya batu dan benda2 keras (seluruh zat-zat padat tidak dapat dikategorikan sebagai fluida karena zat-zat tersebut tidak bisa mengalir secara continue).

Fluida adalah gugusan yang tersusun atas molekul2 dengan jarak pisah yang cukup besar gas dan jarak pisah yang cukup kecil untuk zat cair. Molekul2 tersebut tidak dapat terikat pada suatu sisi, melainkan zat-zat tersebut saling bergerak bebas terhadap satu dengan yang lainnya.

Fluida merupakan salah zat-zat yang bisa mengalir yang mempunyai partikel kecil sampi kasat mata dan mereka dengan mudah untuk bergerak serta berubah-ubah bentuk tanpa pemisahan massa.

Ketahanan fluida terhadap perubahan bentuk sangat kecil sehingga fluida dapat dengan mudah mengikuti bentuk ruang. 

Fluida di bagi menjadi2 bagian di antaranya adalah

  • Fluidan statis (fluida yang diam)
  • Fluida dinamis (fluida yang bergerak)

Apa saja contoh fluida?Berikut ini adalah contoh-contoh fluida diantaranya adalah : minyak pelumas, susu, air, udara, dan gas.

Semua zat-zat diatas atau zat cair itu dapat dikategorikan ke dalam fluida karena sifat-sifatnya fluida yang bisa mengalir dari  tempat yang satu ketempat yang lain.

Jenis aliran fluida terbagi dalam 2 bagian. Apa saja itu?

Ada aliran laminar dan aliran turbulen. Aliran laminar didefinisikan sebagai aliran fluida yang bergerak dalam lapisan-lapisan atau lamina-lamina dengan satu lapisan meluncur secara lancar pada lapisan yang bersebelahan dengan saling bertukar momentum secara molekuler saja. Kecenderungan ke arah ketidakstabilan dan turbulensi diredam habis oleh gaya-gaya geser viskos yang memberikan tahanan terhadap gerakan relatif lapisan-lapisan fluida yang bersebelahan.

Dalam aliran turbulen, partikel-partikel fluida bergerak dalam lintasan-lintasan yang sangat tidak teratur, dengan mengakibatkan pertukaran momentum dari satu bagian fluida ke bagian fluida yang lain. Aliran turbulen dapat berskala kecil yang terdiri dari sejumlah besar pusaran-pusaran kecil yang cepat yang mengubah energi mekanik menjadi ketidakmampubalikan melalui kerja viskos, atau dapat berskala besar seperti pusaran-pusaran besar yang berada di sungai atau hempasan udara. Pusaran-pusaran besar membangkitkan pusaran-pusaran yang kecil yang pada gilirannya menciptakan turbulensi berskala kecil. Aliran turbulen berskala kecil mempunyai fluktuasi-fluktuasi kecil kecepatan yang terjadi dengan frekuensi yang tinggi. Pada umumnya, intensitas turbulensi meningkat dengan meningkatnya Bilangan Reynolds. Aliran akan mengalami proses transisi dari aliran laminar ke aliran turbulen sebelum aliran tersebut turbulen. Pada aliran internal, aliran transisi dari aliran laminar ke aliran turbulen.

Untuk mengetahui jenis aliran fluida dilakukan dengan apa yang disebut dengan bilangan Reynolds (Re).

Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/L) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan ini digunakan untuk mengidentikasikan jenis aliran yang berbeda, misalnya laminar , turbulen atau transisi. Namanya diambil dari Osborne Reynolds (1842–1912) yang mengusulkannya pada tahun 1883.
Re = (ρ v D)/μ

V = Kecepatan aliran (m/dt)

D = Diameter pipa (m)

ρ = massa jenis (kg/m3)

μ = viskositas dinamik (N.s/m3)

Besarnya bilangan Reynold yang terjadi pada suatu aliran dalam pipa dapat menunjukkan apakah profil aliran tersebut laminer atau turbulen. Biasanya angka Re<2000 merupakan batas aliran laminer dan angka lebih besar dari Re >4000 dikatakan aliran turbulen. Sedangkan Rd diantara keduanya dinyatakan sebagai aliran transisi. Karakteristik lain yang mempengaruhi pengukuran laju aliran adalah temperatur dan tekanan fluida tersebut, khususnya bila fluida tersebut adalah fluida gas. Hal ini disebabkan karena massa jenis (ρ) fluida gas sangat dipengaruhi oleh kedua besaran yang disebutkan diatas. Jenis aliran fluida didalam pipa tergantung pada beberapa faktor, yaitu:

a.Kecepatan fluida (v) didefinisikan besarnya kecepatan aliran yang mengalir persatuan luas:

v = QA [m/detik]

b.Kecepatan (Q) didefinisikan suatu kecepatan aliran fluida yang memberikan banyaknya volume   fluida dalam pipa:

Q = A x v [m3/detik].

Posted on Leave a comment

Bagaiamana Memisahkan Campuran dengan Sentrafugasi?

​Pemisahan campuran kerap kali dilakukan di laboratorium. Ada beberapa cara untuk memisahkan suatu campuran. Salah satunya adalah sentrifugasi. Seperti apa sentrifugasi?

Sentrifugasi adalah teknik pemisahan campuran yang dilakukan dengan memanfaatkan gaya sentripetal. Teknik ini paling sering digunakan ketika berhubung dengan bidang biokimia, utamanya pada pemisahan makromolekul atau koloid dari cairan lain.

Bagaimana cara kerja sentrifugasi?

Sampel yang akan dipisahkan dimasukkan ke dalam tabung uji (test tube) kemudian di masukkan dalam alat sentrifuge (centryfuge). Alat sentrifuge akan memutar tabung uji (test tube) dengan kecepatan tertentu, kemudian molekul dengan massa jenis yang lebih besar akan terfokus ke bagian dinding tabung sentrifuge sedangkan molekul dengan massa jenis yang lebih rendah akan terkumpul di bagian tengah (axis). Molekul yang berkumpul di dinding tabung akan membentuk massa yang lebih besar dan tertarik gravitasi sehingga berkumpul di bagian dasar tabung, sedangkan molekul yang memiliki massa jenis lebih kecil berada di bagian atas.

Bagaimana aplikasinya di laboratorium?

Sentrifugasi sangat berguna pada penelitian dan analisis biomolekuler karena dalam proses pemisahannya, tidak terjadi kerusakan struktur sample. Seperti pada pemisahan protein-protein dalam sample, pemisahan sukrosa, selulosa, virus dan beragam makromolekul lainnya. 

Aplikasi Sentrifugasi dalam Ilmu Kimia 

  1. Pemisahan bubuk kapur dari air

  2. Pemisahan lemak dari susu untuk membuat susu skim (skimmed milk)

  3. Pemisahan komponen urin dari darah dalma analisis forensik
    Dibanding dengan metode gaya berat, kecepatan pengendapan dengan gaya sentrifugasi jauh lebih baik, percepatan dengan gaya sentrifugasi bisa 500 hingga 1000 kali percepatan gravitasi bumi (gaya berat) yang bisa meningkatkan kecepatan pengendapan hingga 30 kali.

Alat sentrifugasi ini dapat dibagi menjadi 2 jenis berdasarkan hasil yang didapatkan, yaitu :

1.Alat sentrifugasi filtrasi  (pengendapan)

Alat jenis ini biasanya digunakan untuk memisahkan campuran padatan dan cairan dengan padatan yang lebih banyak dibandingkan cairannya.

Prinsip pemisahan untuk alat ini adalah campuran padat/ cair dimasukkan ke dalam sebuah tromol yang dilengkapi dengan dinding saring. Pada waktu memutar, zat cair didorong keluar, sedangkan padatan tetap tinggal di dalam dinding saring tromol. Jadi disini sentrifugal berfungsi sebagai penyaring (filtrasi).

     Alat sentrifugasi filtrasi yang paling sederhana terdiri dari sebuah keranjang ayak yang berputar cepat di dalam sebuah rumah keranjang bagian dalam dilapisi dengan mdia filter (kain saringan). Keranjang dapat digerakkan/ diputar secara listrik atau hidraulik. Alat ini bisa dipasang secara vertikal atau horizontal.

2.Alat sentrifugasi penjernih (Dekanter, klarifier)

Alat jenis ini dapat digunakan untuk memisahkan cair/ cair atau cair/ cair dengan sedikit endapan, dimana cair/ cair tersebut tidak saling larut (ada perbedaan densitas) dan alat ini bisa beroperasi secara kontinu.

Berbeda dengan alat sentrifugasi penyaring/ filtrasi, tromol maupun rotor pada alat sentrifugasi penjernih dibuat bermantel penuh. Prinsipnya: pada alat ini pemisahan terjadi pada arah radial, sehingga karena percepatan yang besar, partikel berat membentuk lapisan yang terluar dan partikel yang lebih ringan ada di lapisan dalam.

Posted on Leave a comment

Massa Jenis dan Bobot Jenis, Sama Gak sih?

​Sekilas dilihat dari kata massa dan bobot sepertinya sama, tetapi kenyataannya berbeda lho.

Massa jenis atau densitas didefinisikan sebagai massa persatuan volume. Sebagai contoh es atau besi yang memiliki bahan homogen juga memiliki densitas yang sama pada setiap bagiannya. Simbol dari masa jenis adalah ρ (“rho”) berasar dari huruf Yunani. Apabila sebuah bahan yang homogen bermassa m dan memiliki volume v, maka densitasnya adalah m/v.
Nah bagaimana dengan bobot jenis?

Bobot jenis adalah rasio bobot suatu zat terhadap bobot zat baku yang volume dan suhunya sama dan dinyatakan dalam desimal. Bobot jenis menggambarkan hubungan antara bobot suatu zat terhadap bobot suatu zat baku. Contohnya air, yang merupakan zat baku untuk sebagian besar perhitungan dengan bobot jenis 1,00. Sebagai perbandingan, bobot jenis gliserin adalah 1,25 artinya bobot gliserin 1,25 kali bobot volume air yang setara. Dalam penerapannya bobot jenis digunakan untuk mengubah pernyataan kekuatan dalam b/b, b/v, dan v/v.

Selain digunakan untuk mengetahui kekentalan suatu zat cair bobot jenis juga digunakan untuk mengetahui kemurnian suatu zat dengan menghitung berat jenisnya kemudian dibandingkan dengan teori yang ada, jika berat jenisnya mendekati maka dapat dikatakan zat tersebut memiliki kemurnian yang tinggi.

Bagaimana cara mengukur massa jenis dan bobot jenis?

Berat jenis dapat ditentukan dengan menggunakan berbagai tipe piknometer.

Massa jenis zat cair dapat diukur langsung dengan menggunakan alat yang namanya hidrometer. Hidrometer memiliki skala massa jenis dan pemberat yang dapat mengakibatkan posisi hidrometer vertikal. Cara mengetahui massa jenis zat cair adalah dengan memasukkan hidrometer ke dalam zat cair tersebut. Hasil pengukuran dapat diperoleh dengan acuan semakin dalam hidrometer tercelup, menyatakan massa jenis zat cair yang diukur semakin kecil.

Posted on 1 Comment

Mengapa Asap Bergerak Keatas

Asap telah menjadi pemandangan umum kita sehari hari, sangat ironis karena asap ini merupakan polusi udara yang

asap rokok
sumber : purelivingchina.com

dapat menyebabkan berbagai kerusakan lingkungan maupun kerusakan tubuh alias penyakit. Pembakaran sering terjadi dimana mana. Baik sampah, hutan dan yang paling sering di sekitar kita ialah asap rokok. Asap rokok tak perlu diragukan lagi sangat membahayakan orang lain namun justru itu yang sangat sering kita lihat. Kali ini bukan asap rokok yang ingin kita bahas melainkan mengapa asap bergerak keatas , bukan kebawah? Bukankah gravitasi ini menarik kebawah? Continue reading Mengapa Asap Bergerak Keatas